首页> 外文OA文献 >Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control
【2h】

Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control

机译:通过工艺和凝固控制,先进的气体雾化生产氧化物弥散强化(ODS)镍基高温合金

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids.Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature.A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms.Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated as a function of reactive-gas composition and bulk alloy composition. The results indicate that the pulsation mechanism and optimum PSDs reported in the literature were not observed. Also, it was determined that reactive gas may marginally improve the PSD, but further experiments are required. The oxygen content in the gas was also not found to be detrimental to the microstructure (i.e., did not catalyze nucleation), but may have removed potent catalytic nucleation sites, although not enough to significantly alter the microstructure.Overall, the downstream injection of oxygen was not found to significantly affect either the PSD or undercooling (as inferred from microstructure and XRD observations), but injection further upstream, including in the gas atomization nozzle, remains to be investigated.
机译:利用一种新型的气体雾化反应合成(GARS)方法生产具有表面氧化物和内部稀土(RE)的金属间化合物的前体Ni-Cr-Y-Ti粉末。尽管铝是生产工业高温合金所必需的,但选择了Ni-Cr基合金系统作为更易于表征的简化系统。这样做是为了更好地研究加工参数的影响。进行固结和热处理以促进氧从表面氧化物交换到稀土金属间化合物以形成纳米氧化物弥散体。通过内部氧化和系列研磨实验辅助合金选择,发现含H合金可形成更稳定的合金。与含Ti合金相比,Hf体系具有更大的分散相,但与含Ti合金中的两个氧化物相和一个金属间化合物相比,含Hf的体系表现出五个不同的氧化物相和两个不同的金属间化合物。由于较简单的含钛系统更易于表征,并能观察加工参数的影响,因此含钛系统用于实验雾化试验。内部氧化模型用于预测弥散体形成所需的热处理时间与粉末尺寸和温度的函数关系。开发了一种新型高压气体雾化(HPGA)喷嘴,旨在促进类似于工业雾化器的高气流和熔体流动。使用schlieren成像和吸气压力测试来表征雾化喷嘴,以确定最佳的熔体输送尖端几何形状和雾化压力,以促进增强的二次雾化机理。进行了六次雾化试验,以研究气体雾化压力和反应气体浓度对雾化喷嘴的影响。粒度分布(PSD)。另外,还研究了对快速凝固的微观结构的影响(作为粉末尺寸的函数),作为反应气体成分和块状合金成分的函数。结果表明,没有观察到文献报道的脉动机制和最佳PSD。另外,已经确定反应气体可以稍微改善PSD,但是需要进一步的实验。还没有发现气体中的氧气含量对微观结构有害(即没有催化成核),但可能已经去除了有效的催化成核位点,尽管不足以显着改变微观结构。并未发现对PSD或过冷有明显影响(从微观结构和XRD观察得出),但进一步上游(包括在气体雾化喷嘴中)的注入仍有待研究。

著录项

  • 作者

    Meyer, John;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号